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A Comparison of Algorithms for Rational 
/ C Approximation 

By C. M. Lee and F. D. K. Roberts 

Abstract. Results are reported of a numerical study to compare eight algorithms for 
obtaining rational l/o approximations. The algorithms investigated are Loeb's algorithm, the 
linear inequality algorithm, the Osborne-Watson algorithm, the differential correction 
algorithms I, II and III, the Remes algorithm and Maehly's algorithm. The results of the 
study indicate that the Remes algorithm and the differential correction algorithm III 
are the most satisfactory methods to use in practice. 

1. Introduction. Let f(x) be a given real-valued function defined on a discrete 
point set X = {x1, x2, *-.., XN}. Given nonnegative integers m and n, we form a 
rational approximating function 

(1) R(x) = P(x)/Q(x) = , p,xi E qix7. 

The rational 1. approximation problem is to determine the coefficients p* (i = 0, 
1, .. , m) and q*. (j = 0, 1, , n) which minimize the expression 

(2) max If(x,) - R(x,)I = R -R|, 
1 St S N 

subject to the conditions 

Q(xt) > O, t = ,2, ,N. 

Since expression (1) is homogeneous in the coefficients pi and q , we may impose 
a normalization condition, for example max, lqil = 1. 

Existence of a solution to this problem is not guaranteed in general. However, 
for the purpose of this study, we shall assume that f(x) is such that a best approxima- 
tion exists. We shall assume that the best approximation R*(x) is expressed in an 
irreducible form, i.e., P*(x) and Q*(x) do not have a common factor. Uniqueness 
of the best approximation and the following characterization theorem are given in 
Rivlin [19, p. 131]. 

THEOREM. R*(x) = P*(x)/Q*(x) is the best approximation to f(x) on X if and 
only if f(x) - R*(x) has an alternating set consisting of at least 2+max(n+ ap, m+ aq) 
points Qf X, where ap and aq denote the degrees of P*(x) and Q*(x) respectively. 

Barrodale [1] has shown that expression (2) defines a strictly quasi-convex function 
on the domain Q(x,) > 0, t = 1, 2, ... , N, and thus, any local minimum to the 
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approximation problem is necessarily a global minimum. Various algorithms have 
been suggested for determining best approximations (see for example Cheney and 
Southard [7], Rice [18, p. 102], Cheney [4, p. 169]). These fall into two categories. 
Algorithms in the first category determine best approximations by using the above 
characterization theorem. The algorithms of Remes and Maehly are of this type. 
Algorithms in the second category attempt to determine best approximations by 
solving the following nonlinear programming problem: 

minimize w 

subject to f(xt) - E pi~x/ qxt| 
(3) i=0 i=O I = 2 *.. Ng n 

Eqixt >O 
j =O 

max jqil = 1. 

Loeb's algorithm, the linear inequality algorithm, the Osborne-Watson algorithm, 
and the three differential correction algorithms are of this type. These methods solve 
(3) as a series of linear programming problems. 

In this paper, we report results of a numerical study to compare the computational 
behaviour of these various algorithms. In the next section, we give a brief description 
of the eight algorithms we have selected for the study. The third section contains 
details of the study and comments on the results. The fourth section discusses de- 
generacy, and the last section is concerned with the conclusions. 

2. Algorithms. 
2.1. Loeb's Algorithm. The approximation problem is to minimize 

max If(xt) - R(xt)l, 
1 < t < N 

which may be rewritten as 

max jf(Xt)Q(Xt) -P(xt)l 

Loeb [13] proposes the following iterative scheme: At the kth stage, polynomials 
Pk(x) and Qk(x) are determined which minimize 

max 1 |f(xt)Q(xt) - P(xt))> 

The term l/lQk- 1(xt)l acts as a known weight factor and the problem is a linear 
approximation problem which can be solved by the techniques of linear programming. 
The normalization is accomplished by setting qo = 1 at each stage. The algorithm 
is not guaranteed to converge in general. Computational experience with the algo- 
rithm in 11, 12 and 4. norms is reported by Barrodale and Mason [2]. 

2.2. The Linear Inequality Algorithm. The approximation problem may be 
stated in the following way: Find the smallest value of w such that the following 
system of inequalities is consistent: 
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If(xt)- R(xt)l < w t = 1, 2, , N. 

-Q(xt) ? oJ 

If the approximation is normalized by setting q0 = 1, then the system may be written as 
n m 

[f(xt) - w] Eqx - E ptx~ -< w f(xt) 
j=l 

t 

n in 

[_f(Xt) _ W] E ix - E jx w + fx) t=1, 2, * N. 
j=1 i=O 

nI 
-E q7xt -< 1 

i =1 

This system of inequalities is nonlinear. However, if w is assigned a fixed value 
then the system becomes linear, and the feasibility may be determined by linear 
programming. Since the error w* corresponding to the best approximation lies in 
the interval [0, max, lf(x,)I], it may be located by the method of bisection. At each 
iteration, the value of w is chosen to be the midpoint of the interval obtained at the 
previous iteration. If the system is consistent, the search is restricted to the lower 
half of the interval. If the system is inconsistent, the search is restricted to the upper 
half. The method is due to Loeb [14]. The rate of convergence of this algorithm is 
slow since at each iteration, the interval containing w* is only reduced by a factor 2. 

The normalization q0 = 1 may for some problems conflict with the inequalities 
Q(xt) > 0, t = 1, 2, ... , N. In these cases, other normalizations may be used (for 
example q0 = -1). 

2.3. The Osborne-Watson Algorithm. Osborne and Watson [16] present a 
general algorithm for solving the nonlinear lo: approximation problem. Watson 
[20] discusses the application of this algorithm to rational l. approximation. The 
algorithm is an iterative scheme which at the kth iteration determines polynomials 
apPk(x) and 8Qk(x) which minimize the expression 

(4) max f (xt) - ek l(t) + Pk(x) aQ(x) - Q l(t ) aP(x2) 
1 !.t -N Qkl( 

The kth approximation Pk(X)/Qk(X) is given by 

pk(X) pk l(X) + Xk apk(X) 

Qk(X) Qk l(x) + Xk aQk(x) 

where Xk is chosen to minimize the expression 

(5) max f(xt) - 
pkl(Xt) + X aQk(Xt 

1 St SN Q/&(x) + X aQk(x) 

Expression (4) is obtained by making a linear approximation to expression (2). 
The minimization of (4) can be accomplished by linear programming. The nor- 
malization is accomplished by setting q0 = 1. The minimization of (5) is approximately 
obtained by searching for values of X on the set 0(. 1)1, except where this gives a value 
of zero when a more accurate value is obtained. Convergence of the method is dis- 
cussed by Osborne and Watson [16]. 
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2.4. The Differential Correction Algorithm I. The differential correction algo- 
rithm was first discussed by Cheney and Loeb [5]. However, in the later literature, 
the algorithm is described in a slightly modified form. The later version of the algo- 
rithm which is described by Cheney and Loeb [6], Cheney and Southard [7], Rice 
[18, p. 116], Cheney [4, p. 171], we shall refer to as the differential correction algo- 
rithm I. The original version will be referred to as the differential correction algo- 
rithm II. 

The algorithm is an iterative scheme. At the kth stage, an approximation 
Pk-l(x)/Qk-l(x) is available with error w,-l. The algorithm determines polynomials 
Pk(x) and Qk(x) which minimize the expression 

(6) max {lf(xt)Q(xt) - P(xt)lj Wk-lQ(Xt)) 

subject to the normalization that the coefficients of Q(x) are bounded by 1 in modulus. 
This minimization can be accomplished by linear programming. The method is 
guaranteed to converge to the best approximation from any initial approximation 
with positive denominator in at least a linear rate (Cheney [4, p. 171]). 

2.5. The Differential Correction Algorithm II. The version of the differential 
correction algorithm presented by Cheney and Loeb [5] has recently been studied 
by Barrodale, Powell and Roberts [3]. The algorithm differs from the previous 
algorithm in that expression (6) is replaced by 

(7) max { if(xt)Q(x t) - P(xt)l - wk_Q(xt)} 

With both versions of the algorithm, the constraints Q(xt) > 0, t = 1, 2, * , N, 
are maintained automatically and hence need not be incorporated into the linear 
programming formulation of the minimization of (6) and (7). The proof of con- 
vergence and the following theorem are given in [3]. 

THEOREM. If N > m + n + 1, if a best approximation exists, and if the best 
approximation is not degenerate, then the rate of convergence of the algorithm is at 
least quadratic. 

2.6. The Differential Correction Algorithm III. Computational experience with 
the differential correction algorithm II indicates that even though the ultimate con- 
vergence rate is quadratic, the convergence rate in the early iterations can be slow. 
The method can be substantially improved if a good initial approximation is available. 
We have therefore tried the algorithm using as initial approximations the poly- 
nomials P1(x) and Q'(x) which minimize the expression 

max { lf(xt)Q(xt)- P(xt)l }, 
l1? t 'AN 

subject to the normalization q0 = 1. This linear problem is identical to the first 
iteration of Loeb's algorithm, and our numerical study indicates that the solution 
frequently yields an excellent approximation. Provided that Ql(x) does not change 
sign on the discrete point set X, after a suitable normalization, Pl(x) and Q1(x) 
may be used as input to the differential correction algorithm II. In the cases where 
Ql(x) does change sign, we have initiated the algorithm with the values Pl(x) = 0, 

Q 1(x) = 1. 
2.7. The Remes Algorithm. This is perhaps the most popular method for ob- 
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taining rational approximations. There are many variations of the algorithm (see 
for example Rice [18, p. 109], Fraser and Hart [11], Ralston [17, p. 301], Werner 
[21]). The version we consider assumes that the best approximation R*(x) is not 
degenerate, and, hence, by the characterization theorem, the error function e*(x) = 
f(x) - R*(x) alternates at least m + n + 2 times. A reference set Xk is defined to be 
a set of m + n + 2 distinct ordered points (yk, y', . * y k +n+2) of X. The algorithm 
is an iterative scheme which is implemented in two stages. 

(i) Given a reference set Xk-l at the (k- I)st stage, an approximation Rk(x) 
is obtained such that its error function Ek(X) = f(x) - Rk(x) alternates m + n + 2 
times on X"1. 

(ii) The extreme points of the error function Ek(X) yield a new reference set Xk. 
The second stage of the algorithm is straightforward in the discrete case since 

the new reference set can be obtained by a direct search over the N points of X. 
The first stage requires the solution of the following system of nonlinear equations 

(8) f(yi) - R(yi) = (-1)X, i = 1, 2, . . , m + n + 2, 

or, equivalently, 

(9) f(Yi)Q(Y) - P(yi) = (-1)iXQ(yi), i = 1, 2, 9., m + n + 2. 

These equations dre normalized by setting q0 = 1, and the solution is obtained by 
Newton's method. 

2.8. Maehly's Second Algorithm. This method was proposed by Maehly [15]. 
The algorithm assumes that the error function e*(x) of the best approximation has 
exactly m + n + 1 zeros z*, z*, ..., Z*+ n+ 1 It may therefore be written in the form 

m+n+ 1 

e*(x) = G(x) fl (x -z*), 
I =1 

where G(x) is a positive (or negative) function. The method is an iterative scheme 
which is implemented in two stages. 

(i) Let xl < Zl < Z2 < ... < Zm+n+l < XN be estimates of the zeros of the 
error curve e*(x). An approximation R(x) is obtained by solving the equations 

(10) R(zl) = f(z1), 1 = 1, 2, ... , m + n + 1. 

(ii) The extreme points xi, x2, ..., Xm+n+2 of the error function E(x) = f(x) - R(x) 
are then used to obtain corrections 6z1, 6Z2, ... , 6Zm+n+l to the zeros. 

The system (10) is normalized by setting q0 = 1 and may be solved as a system 
of linear equations. The corrections to the zeros in the second stage are obtained 
by solving the linear equations 

m+n+ 1 

E (X - Z) log E(xj)l - log 1XI, i 1, 2, .. ., m + n + 2. 

Convergence of the method is discussed by Dunham [8], [9]. 

3. Numerical Results. To test the algorithms numerically, we selected 11 
data sets (see Table 1), and approximated each data set by rational functions PO/Q2, 

Pl/Ql, P2/Q2, P1/Q3, P4/Q2, where the subscripts denote the degrees of the poly- 
nomials. The six algorithms which require linear programming techniques were 
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solved by applying the revised simplex method (see for example Gass [12, p. 106]) 
to the dual formulation of the linear programming problem. The two algorithms 
which require the solutioni of a system of linear equations were solved using the 
method given in Forsythe and Moler [10, p. 68]. All algorithms were programmed in 
FORTRAN and run in double precision arithmetic (16 digits) on an IBM 360/50. 
The initial approximations for Loeb's algorithm, the Osborne-Watson algorithm, 
and the differential correction algorithms I and II were taken to be P?(x) = 0, Q?(x) = 
1. The initial reference set for the Remes algorithm was taken to be the points of X 
closest to the extrema of the (m + n + I)st Chebyshev polynomial shifted to the 
interval [xl, XN], and the initial zeros for Maehly's algorithm were taken to be the 
zeros of this polynomial. The algorithms (except the Remes algorithm) were 
terminated when either the relative change in error in two successive iterations was 
less than 10-7 , or after 50 iterations. The Remes algorithm was terminated when 
two successive reference sets were identical. 

Complete details of the numerical study appear in the microfiche section of this 
issue. Tables 2.1-2.8 record the number of iterations and the central processor time 
required for convergence of each of the algorithms, and also indicate the examples 
for which an algorithm fails to produce the best approximation. Table 3 of the 
microfiche section records the errors of best approximation. 

Table 4 attempts to summarize these results. We list the average central processor 
time required by each algorithm to solve each of the 55 examples, and also the number 

TABLE 1 
Data Sets Used in the Numerical Study 

Number of Points 
Function f(x) [xl, XN] (Equally Spaced) 

fl e' [- 1, 1] 51 
f2: sin(x) [-3, 3] 21 
f3: v/x [0,1] 11 

f 1 [0, 0.5) 
f4: A0 x= 0.5 21 

t-1 (0.5, 1] 
fx [0, 1] 

f5: ) 51 
l0.5x + 0.4 (1, 2] 
feX [0, 1] 

f6: A 21 
e-x_el+e (1,2] 

f7: log(l + x) [0, 1] 51 
f 8: erf(x) [0, 2] 21 
f9: e z2 [0, 2] 11 
flo: F(x) [2, 3] 51 
fil: F(x) [2, 3] 101 
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of examples for which an algorithm fails to produce the best approximation. We 
make the following comments on the results: 

Loeb's Algorithm. For the smooth data sets, this algorithm usually converges 
very rapidly. However, the algorithm may fail to converge, may converge very slowly, 
and may converge to an approximation with a pole in the interval [xl, XN]. More 
seriously, the algorithm may converge to a pole-free approximation which is not 
the best approximation. Conditions under which the algorithm is convergent are 
unknown. 

The Linear Inequality Algorithm. At each iteration of this algorithm, the interval 
containing we is only reduced by a factor 2, and hence the convergence is quite slow. 
We encountered one minor difficulty with the algorithm when approximating F(x) 
(flo and fil) by PI/Q3. The best approximation using 101 points (fil) is 

-0.04076 - 0.23422x 
I23 1 - 1.76828x + 0.64651x - 0.06983x 

The denominator in this expression is negative in the interval [2, 3]. Using the algo- 
rithm with the normalization q0 1 and the constraints Q(x,) ? 0, t = 1, 2, ... , N, 
produces an incorrect solution. However, using the normalization q0 = -1 produces 
the best approximation. 

The Osborne-Watson Algorithm. The ultimate convergence rate for this algo- 
rithm appears to be quadratic, although, in the early iterations, the convergence 
can be fairly slow. We encountered one example where the algorithm converges to 
an approximation with a pole in [x,, XN]. When the linear constraints Q(x,) _ 0, 
t = 1, 2, . , N, are included in the linear programming formulation of (4), the 
algorithm converges to the best approximation for this example. Also, when ap- 
proximating 17(x) (flo and fil) by P1/Q3, the algorithm does not converge to the 
best approximation. In order to obtain convergence, it is necessary to change the 
values of X used in the linear search from 0(.1)1 to - 1(.1)1. 

The Differential Correction Algorithm I. The convergence of this method is 

TABLE 4 
Summary of Numerical Results 

Number of Failures 
Average Central Processor (Total Number of 

Algorithm Time in Seconds Examples 55) 

Loeb 19.2 9 
Linear Inequality 46.4 0 
Osborne-Watson 17.0 1 
Differential Correction I 65.9 0 
Differential Correction II 21.5 0 
Differential Correction III 12. 8 0 
Remes 2.8 5 
Maehly 3.9 24 
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guaranteed. However, the convergence rate is quite slow, and we encountered 13 
cases where the algorithm does not converge in 50 iterations. 

The Differential Correction Algorithm II. This method is guaranteed to converge 
from any starting approximation with positive denominator, and the ultimate con- 
vergence rate is quadratic. In the early iterations, however, the convergence can be 
slow. The errors obtained in successive iterations, when F(x) (f l) is approximated 
by P2/Q2, are typical of the convergence of the algorithm. 

Iteration Error Iteration Error 
1 0.100000000 (1) 7 0.463845537 (-3) 
2 0.376442069 (0) 8 0.126144341 (-3) 
3 0.114598168 (0) 9 0.370570234 (-4) 
4 0.435131594 (- 1) 10 0.364318280 (-4) 
5 0.840774023 (-2) 11 0.364317143 (-4) 
6 0.147065926 (-2) 12 0.364317143 (-4) 

The Differential Correction Algorithm III. This algorithm appears to be the most 
satisfactory of the linear programming methods. For the smooth data sets, the initial 
iteration usually gives an excellent starting approximation for the algorithm. We 
encountered 11 cases where the initial iteration produces an approximation with a 
pole in [xl, XN]. In these cases, the algorithm was restarted from the approximation 
P1(x) = 0, Q'(x) = 1. We list below the errors obtained in successive iterations 
when F(x) (f,n) is approximated by P2/Q2. 

Iteration Error 
1 0.436948626 (-4) 
2 0.364453365 (-4) 
3 0.364317144 (-4) 
4 0.364317143 (-4) 

These results are typical of the fast convergence obtained with this algorithm. 
The Remes Algorithm. The convergence of this method is very rapid; the ref- 

erence set for the best approximation usually being obtained in a few iterations. 
The two cases where the algorithm fails to converge are due to degeneracy, cor- 
responding to an error of best approximation which alternates less than m + n + 2 
times. We encountered three cases where the algorithm converges to a solution with 
a pole in the interval [xl, XN]. 

Maehly's Algorithm. Of the algorithms we tested, this method is the least success- 
ful. For the smooth data sets, the algorithm frequently converges quite rapidly. 
In the cases where the method fails to converge, this is due either to an iteration 
producing an error function which alternates more (or less) than m + n + 2 times 
on X, or the corrections to the zeros lying outside the interval [xl, XN]. 

4. Degeneracy. Degeneracy occurs when the degrees of P*(x) and Q*(x) are 
strictly less than m and n, respectively. The error function f(x) - R*(x) may then 
alternate less than m + n + 2 times. This can cause difficulties with the popular 
Remes algorithm. Rice [18, p. 77] states "Some of the other computational methods 
proposed for rational approximation do not, in theory, encounter these difficulties, 
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but this has not yet been verified by actual experiment". To test the algorithms on 
a near degenerate example, we consider the approximation of F(x) by P1/Q2, using 
101 equally spaced points in [2, 3]. The best approximation by P0/Q, has three error 
alternations, and almost alternates one extra time. The best approximation by P1/Q2 is 

0.49405 - 0.16436x 
1 - 0.58424x + 0.08369x2 

with error 0.56739 (-2). The numerator and denominator in this approximation 
have factors (x - 3.00598) and (x - 3.00604) respectively, and thus the approxima- 
tion is nearly degenerate. The Remes algorithm, Maehly's algorithm and Loeb's 
algorithm all fail to produce this best approximation. The five other algorithms all 
converge without apparent difficulty. The differential correction algorithms II and 
III, for example, produce the five error alternations correct to twelve decimal places. 

An example frequently quoted in the literature of a degenerate approximation 
is the approximation of F(x) in the interval [1.9507, 3]. Many authors state that the 
best approximation by Po/Qi has four error alternations in the continuous case, 
and thus the best approximation by P1/Q2 is degenerate. However, this is false. 
The value 1.9507 is obtained by considering the error of the best approximation to 
F(x) in the interval [2, 3] by Po/Qi, and then locating the point outside this interval 
at which the fourth alternation occurs. Unless this point is identified exactly, however, 
the best approximation will only alternate three times. Our calculations indicate 
that the correct value (to 10 decimal points) is 1.9507929092. Using the value 1.9507 
(or 1.95), for example, produces only three alternations (and nearly four). Thus, 
the best approximation by P1/Q2 is not degenerate, although it is very nearly de- 
generate. 

In the discrete case, using 101 equally spaced points in [1.9507, 3], the best ap- 
proximation by Po/Ql alternates three times, and almost alternates one extra time. 
Thus, the best approximation by P1/Q2 cannot be degenerate. In fact, computational 
experience with this problem indicates that no best approximation exists! Watson 
[20] reports results for the Osborne-Watson algorithm applied to this example. His 
results are only recorded to six decimal places and so we have repeated his experi- 
ment to obtain more accuracy. The approximation we obtain has a pole at the point 
x = 2.98705, which is clearly unacceptable. The five error alternations are obtained 
to eleven decimal places. We strongly believe that no (pole-free) best approximation 
exists for this problem. 

To test the linear programming algorithms on a degenerate problem, we consider 
the approximation of f(x) = 3/(1 + 2x) + g(x) using 101 equally spaced points in 
[0, 1] by P1/Q2. The values g(xi) are + 1 at the 11th and 31st points, -1 at the 21st 
and 41st points, and uniform random numbers in [-2, 2] at all other points. The best 
approximation by Po/Ql is 3/(1 + 2x) with error 1. This approximation has 4 error 
alternations and thus the best approximation by P1/Q2 is also 3/(1 + 2x), which is 
degenerate with defect 1. Loeb's algorithm does not converge for this problem. The 
linear inequality algorithm converges to the approximation (within round-off error) 
13(1 - x) }/ { (l + 2x)(1 - x) }. The differential correction algorithms I, II, III 
converge to the approximation { 3(1 + x) } / { (1 + 2x)(1 + x) }. The Osborne-Watson 
algorithm experiences some numerical instability for this example. By terminating 
the method when the relative change in the error in two successive approximations 
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is less than 10-5 (in place of 10-7) produces the approximation 

{3(1 - 0.94178x) } / {(1 + 2x)(1 - 0.94178x)}. 

It appears that the three differential correction algorithms are the only techniques 
which do not encounter difficulties with this degenerate example. 

5. Conclusions. The results of this study indicate that the linear programming 
algorithms cannot compete with the Remes algorithm in terms of computer time. 
However, it does appear that cases which are awkward for the Remes algorithm do 
not present problems for some of the other algorithms. Of these methods, the dif- 
ferential correction algorithm III appears to be the most satisfactory. 
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TABLES 2.1-2.8 

and 3 



TABS- 2.1-2.8 

Results of nurical study 

The folloing notation is uned 

I - number of iterations required for convergence. 

C.P. - central processor tie in nconds. 

F - algoritha fails to converge. 

* - algoritha converges to an approximation with a pole in [x1i,%. 

- algorithm converges to a pole-free non-bat approximation. 



T A B L E 2.1 

Loeb's Algoritta 

l oQP/Q2 | 2/Q 2 | P/Q3 j P/Q2 

I COS C.P. I C.P. I C.P. I C.P. 

f1 7 
.75 8 7.8 6 12.5 6 i3.3 5 1 16.2 

f 2 2.2 2 2.4 F F 6 10.7 2 

f3 10 3.0 23 7.1 8 4.6 7 3.8 7 6.1 

f4 * 1 3^ 3 2.0 3 2.5 6^ 5.1 14 13.0 11 21.1 

f5 3** 5.2 41 43.7 F 14** 25.2 >50 >212.9 

f F 10 4.7 24 18.1 17' 17.3 15 28.6 6 

IE7 1 5 5.9 23 24.2 5 9.2 4 8.4 5 16.7 

f 11 6.2 25 10.9 8 7.0 6 5.1 6 8.8 8 

f 14 3.9 13 4.1 8 4.6 9 4.9 6 5.9 9 

f10 7 8.9 5 5.9 6 11.8 6 11.8 5 16.9 

f11 7 15.7 5 11.1 6 24.0 6 23.4 5 31.4 



T A B L E 2.2 

The Linear Inequality Algorithm 

_P /Q_ P/Q 2 2_ /Q2 p /QQ3 p4 Q2 

I C.P. I C.P. I C.P. I C.P. I C.P. 

f1 31 17.6 30 25.7 39 70.3 38 60.1 47 110.9 

f2 24 8.8 24 7.8 25 22.5 25 32.5 31 38.6 

f3 29 4.5 26 6.6 34 11.8 32 10.9 40 19.9 

f4 24 7.1 24 6.6 26 16.7 26 22.2 28 42.1 

f5 28 26.6 26 22.0 28 38.2 29 88.4 30 362.3 

f6 27 6.5 27 10.4 29 23.7 29 30.5 30 47.5 

f7 33 21.4 27 31.2 42 64.1 40 54.1 51 114.9 

f8 28 8.0 26 12.0 33 18.5 34 19.3 38 38.7 

f9 28 5.5 28 5.0 32 12.2 32 12.7 38 20.1 

f10 32 20.1 32 22.2 39 61.9 '39 59.8 47 131.0 

f11 32 36.8 32 42.3 39 130.6 39 131.2 47 276.7 

11~ ~ ~ 1 -- I I 1 -.--. I- 



T A B L E 2.3 

Th Osborne-Watson Algaritk 

/Q 1 
_ 

PO/Q2 P2/Q2 1 _ P _/_3 I P4/Q2 

I C.P. I C.P. I C.P. I C.P. I C.P. 

f 6 11.5 8 14.2 7 20.4 8 23.5 7 31.0 
1 

f2 
2 2.4 1 1.8 8 10.4 8 11.6 6 13.7 

f3 7 3.5 7 3.8 11 8.1 7 4.9 13* 14.6 

4 2 2.8 1 1.5 9 10.6 7 8.4 13 27.0 

f5 1 6 10.7 7 12.1 8 20.8 7 23.8 10 52.1 

f 7 5.6 6 5.3 7 9.4 10 14.5 7 14.1 

7 6 11.3 8 14.5 8 24.9 6 16.1 8 38.8 

8 
7 5.9 7 5.9 7 10.0 7 9.7 7 14.0 

f 6 3.5 8 4.2 9 7.0 8 6.9 6 7.6 9.~~~~~~~~~~~~~~~~~~~~~~~. 

f10 
7 11.9 8 12.4 8 24.2 9 38.0 7 34.7 

f11 
7 21.3 8 23.1 8 46.3 11 82.8 7 63.8 



T A B L E 2.4 

The Differential Correction Algrithm I 

- I ~~~Pl/Q, I ,p0/Q 2 I P2/Q2 I I P/Q3 I P4/Q2 
_ I C.P. I C.P. I C.P. I C.P. I C.P. 

f 23 25.6 37 40.8 31 83.4 47 122.4 '50 >278.2 

f2 2 2.1 1 1.8 28 34.2 27 35.0 17 40.3 

3 28 12.0 22 9.4 >50 >54.6 39 50.4 50 >94.1 

f4 1 3 2.4 1 1.2 >50 >63.3 >50 '140.2 1'50 1239.5 

f5 13 17.0 33 .34.8 41 87.1 20 54.3 >50 >221.8 

f 24 15.2 25 13.2 >50 >69.1 >50 >75.6 >50 >166.4 6 

f7 16 14.9 29 40.8 28 103.9 21 48.4 39 247.7 

f 24 11.5 24 14.5 39 42.7 30 48.3 '50 '100.3 

f9 14 5.0 47 14.7 48 2.8 '>50 >49.4 >50 >60.3 

f10 20 26.4 19 21.1 19 52.5 20 62.3 19 91.8 

f? 20 49.7 19 37.3 19 92.8 20 116.3 19 158.6 



T A B L E 2.5 

The Differential Correction Alrritm II 

pI/ I PO/Q2 P2/02 
p P1/Q 3 P,/Q2 3 

lCIP| C . PC. | I C|P I 
.C .r P 

.Z 

f 7 8.1 7 10.4.| 10 27.4 11 35.8 11 54.9 1 

f2 2 2.1 1 1.9 7 10.4 8 13.5 10 25.3 

f 9 4.0 9 4.7 12 13.0 10 11.1 14 29.8 3 

f4 6 3.8 1 1.4 10 12.7 8 10.3 13 26.4 

f? 7 8.9 9 12.1 8 17.9 10 27.7 18 84.5 

f6 1 8 4.7 9 5.9 9 11.4 12 14.2 13 31.2 

7 6 7.5 9 13.3 8 15.9 8 21.3 9 39.9 

? 7 4.1 8 5.7 8 8.8 9 9.7 10 29.8 8 

9 7 2.9 7 3.6 8 8.9 8 9.1 10 22.9 

f?0 9 12.4 8 11.9 12 32.4 12 b.9 13 70.7 

11 9 21.6 8 21.0 12 59.8 12 S9.S 13 130.S 



T A B L E 2.6 

The Differential Correction Algorithm irr 

P1/Ql PO/Q2 P2/Q2 j PI/Q3 p /Q2 

-I eC.P. r C .P. I C.P. II |C.. I C. 

1 5 6.8 5 7.9 4 12.6 5 19.5 4 20.6 

f 2 2.1 2 2.4 a 12.6 9 14.9 5 13.2 2 

f3 5 2.8 10 5.0 6 8.0 5 5.6 6 15.8 

f4 7 4.5 2 1.6 6 7.4 7 8.8 7 18.1 

fs- 1 5 7.1 10 13.3 9 21.7 6 23.7 14 77.0 

f6 1 9 5.0 5 3.8 6 9.4 13 16.0 6 17.8 

f 4 5.3 10 14.7 4 9.9 4 11.5 4 22.0 71 

f 5 3.5 9 6.5 5 6.6 4 5.8 4 16.4 

f? 5 2.5 8 4.0 5 7.0 5 6.7 4 11.7 

f 5 8.2 4 6.7 4 13.6 4 14.1 4 25.7 10 

? 5~ 14.1 4 11.3 4 24.3 4 23.2 4 44.7 11 



T A X L R 2 7 

The Rns Algorithm 

I/Q I PO/Q?2 
p 

~~I~2/Q22P1/Q3 P4 /Q2 

r C. . I C.P. I C.P. r C.P. I C.P. 

f 3 2.7 3 2.9 3 3.2 3 3.2 3 3.6 

f 2 1.3 F 2* 2.0 2* 2.1 1 1.7 
2 

f3 2 1.4 2 1.5 3 2.3 3 2.1 3 2.9 

f4 2 1.4 F 3 2.5 3 2.5 4 3.7 

f? 4 3.7 4 3.3 4P 4.4 4 4.1 6 7.3 

f? 2 1..8 3 2.0 4 3.3 3 2.7 5 4.7 

f7 2 2.2 3 2.8 2 2.4 2 2.4 3 3.9 

fe 2 1.6 2 1.7 3 2.3 3 2.2 2 2.3 

f9 2 1.6 2 1.6 3 2.2 3 2.1 2 2.2 

t10 2 2.2 2 2.2 2 2.6 2 2.6 2 3.1 

f3 4.1 3 4.1 2 3.7 3 4.7 2 3.8 



T ABLS9 2.18 

Na.hlyls Algorithm 

_______ 
P1/Q2 

p 
2/2P /Q3 P4/Q2 

rI .. r C. J ___ r C.S. I C.P. r CS.P 

f 8 5.5' 6, 5.5 6 4.18 7 5.5 6 5.6 

f 7 2.9 F Fp F 5 3.2 
2 

?3. F 12 3.2 F F F 

f4 

V F ~~~ ~~~28 16.8 Fp Fp F 

f F F F FF 
6 

f 6 4.4 15 9.3 6 4.9 6 4.8 6 5.5 
7 

fa 13 4.7 23 7.6 11 S.0 11 S.2 9 5.4 

? 9 12 3.2 F F 9 3.7 Fp 

f 6 4.2 6 4.3 6 4.9 6 4.7 6 S.8 
10 

f 1j 6 7.3 6 7.1 5 6.7 6 18.1 5 7.3 



T A BL E 3 

Erors of Best Approximation 

l } P8Q~~~2 2 '/2 1 P/3 4 24o 

f 0.20932(-1) 0.34791(-1) 0.86644(-4) 0.12392(-3) G(21037(-6) 

f2 0.62542(0) 0.99749(0) 0.30608(0) 0.30608(0) 0.66482(-2) 

f 0.36243(-1) 0.18078(0) 0.77019(-3) 0.37281(-2) 0.10202(-4) 
3 

f 0.81818(0) 0.10000(1) 0.26923(0) 0.26923(0) 0.70465(-1) 4 

f? 0.58916(-1) 0.22594(0) 0.54260(-1) 0.48S81(-1)' 0.18717(-1) 

f6 0.30372(0) 0.20697(0) 0.86504(-1) 0.95354(-1) 0.30919(-1) 

f7 0.B5978(-3) 0.92869(-1) 0.17028(-4) 0.74224(-S) |0.5S255(-8) 

f 0.44085(-1) 0.19M4(0) 0.137S4(-2) 0.92931(-3) 0.44515(-4) 

f9 0.72164(-1) 0.69042(-1) 0.2556 (-2) 0.41421(-2) 0.38213(-4) 

f?0 0.64376(-2) 0.64307(-2) 0.36395(-4) O.55 96(-4) 0.17428(-6) 

f? 0.6420(-2) 0.64351(-2) 0.3E432(-4) 0.55160(-4) 0.17660(-6) 
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